Surface proteins of Plasmodium falciparum merozoites binding to the erythrocyte receptor, glycophorin

نویسنده

  • M E Perkins
چکیده

Invasion of erythrocytes by the malarial parasite is a receptor-mediated process. P. falciparum merozoites recognize and bind to erythrocyte surface sialoglycoproteins, glycophorins A and B, and the glycophorins bind to saturable sites on the merozoite surface. The purpose of the present work was to identify a receptor or ligand molecule on the merozoite surface that mediates binding to the erythrocyte. A fraction containing the sialoglycoproteins was coupled to an acrylamide matrix and incubated with metabolically labeled merozoites. A merozoite protein of 155 kD that labeled prominently with [3H]glycine bound to glycophorin. A minor protein of 130 kD also bound. Both proteins are rich in proline and glycine, poor in methionine, and may be related. The proteins are also stable to heating to 100 degrees C for 10 min. Immunoelectron microscopy demonstrated that the 155 kD and 130 kD proteins are located on the merozoite surface coat. The antibodies significantly inhibited merozoite invasion into erythrocytes and also binding of the proteins to the glycophorin-matrix. The specific binding of the 155-kD and 130-kD proteins to the erythrocyte receptor and the demonstration that they are located on the merozoite surface suggest they could be receptor proteins that mediate binding of the merozoite to the erythrocyte surface.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Plasmodium falciparum Homologue of Plasmodium vivax Reticulocyte Binding Protein (PvRBP1) Defines a Trypsin-resistant Erythrocyte Invasion Pathway

Invasion of erythrocytes by Plasmodium merozoites is an intricate process involving multiple receptor-ligand interactions. The glycophorins and an unknown trypsin sensitive factor are all erythrocyte receptors used during invasion by the major human pathogen Plasmodium falciparum. However, only one erythrocyte receptor, Glycophorin A, has a well-established cognate parasite ligand, the merozoit...

متن کامل

Polymorphisms in erythrocyte binding antigens 140 and 181 affect function and binding but not receptor specificity in Plasmodium falciparum.

Invasion of human erythrocytes by the malaria parasite Plasmodium falciparum utilizes multiple ligand-receptor interactions involving erythrocyte receptors and parasite erythrocyte binding proteins of the Duffy binding-like family. Erythrocyte binding antigen 175 (EBA-175) binds to glycophorin A, the most abundant protein on the human erythrocyte surface and EBA-140 (also known as BAEBL) binds ...

متن کامل

Inhibitory effects of erythrocyte membrane proteins on the in vitro invasion of the human malarial parasite (Plasmodium falciparum) into its host cell

The intracellular development of the erythrocytic stage of the malarial parasite (merozoite) is initiated by the attachment of the parasite to the erythrocyte surface. This paper describes an assay system to investigate Plasmodium falciparum merozoite entry into the host cell and reports on three observations regarding this interaction. (a) Merozoites do not invade human erythrocytes treated wi...

متن کامل

Distinct External Signals Trigger Sequential Release of Apical Organelles during Erythrocyte Invasion by Malaria Parasites

The invasion of erythrocytes by Plasmodium merozoites requires specific interactions between host receptors and parasite ligands. Parasite proteins that bind erythrocyte receptors during invasion are localized in apical organelles called micronemes and rhoptries. The regulated secretion of microneme and rhoptry proteins to the merozoite surface to enable receptor binding is a critical step in t...

متن کامل

The Baculovirus-Expressed Binding Region of Plasmodium falciparum EBA-140 Ligand and Its Glycophorin C Binding Specificity

The erythrocyte binding ligand 140 (EBA-140) is a member of the Plasmodium falciparum DBL family of erythrocyte binding proteins, which are considered as prospective candidates for malaria vaccine development. The EBA-140 ligand is a paralogue of the well-characterized P. falciparum EBA-175 protein. They share homology of domain structure, including Region II, which consists of two homologous F...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 160  شماره 

صفحات  -

تاریخ انتشار 1984